
An Evaluation of Message Passing Implementations on
Beowulf Workstations

P. H. Carns W. B. Ligon III S.P. McMillan R. B. Ross
ParallelArchitectureResearchLab

ClemsonUniversity
102RiggsHall

Clemson,SC29634-0915
864-656-7223

pcarns@eng.clemson.eduwalt@eng.clemson.edu spmcmil@eng.clemson.edurbross@eng.clemson.edu

Abstract— Beowulf workstationshave becomea popular
choicefor high-endcomputingin anumberof applicationdo-
mains.Oneof thekey building blocksof parallelapplications
on Beowulf workstationsis a messagepassinglibrary. While
therearemessagepassinglibrary implementationsavailable
for useon Beowulf workstations,asof yet nonehave been
specifically tailored to this new, uniquearchitecture. Thus
it is importantto evaluatethe existing packagesin order to
determinehow theseperformin this environment. This pa-
perexaminesasetof four messagepassinglibrariesavailable
for Beowulf workstations,focusingon their features,imple-
mentation,reliability, andperformance.Fromthis evaluation
weidentify thestrengthsandweaknessesof thepackagesand
point out how implementationsmight beoptimizedto better
suit theBeowulf environment.

TABLE OF CONTENTS

1 INTRODUCTION

2 IMPLEMENTATION OF PACKAGES

3 PERFORMANCE

4 CONCLUSION

1 INTRODUCTION

As parallel processinghas matured, two programming
paradigmshave beendeveloped,sharedmemoryand mes-
sagepassing.Particularly for distributedmemorymachines,
messagepassinghas becomethe most popular technique
for implementingparallel applications. As this popularity
increased,messagepassinginterfacesand libraries devel-
oped and maturedto match demand. Now it is common
for commercialmachinesto includea machine-specificmes-
sagepassingimplementationsuchasthe NX library for the
ParagonandtheMPL andMPI librariesfor theIBM SP-2.

As clustersof workstationswererecognizedasa viableplat-
form, messagepassinglibrariesgrew to supportthis new ar-
chitectureas well. This led to libraries suchas PVM [4],
which wasspecificallydesignedfor usein situationswhere
the“virtual machine”oftenvariedeachtimethesoftwarewas

started. As the numberof messagepassinglibraries grew,
standardAPI’s for messagepassing,suchasMPI [13], were
introducedto provide a commoninterfacefor programmers
developingfor multiple architectures,while allowing the ar-
chitecturevendorsthe flexibility to implementthe interface
efficiently. Thishashelpedto eliminatesituationswherepro-
grammersareforcedto recodeapplicationsto move themto
a new platform.

A new classof parallelmachines,termedBeowulf worksta-
tions,hasbecomea popularapproachto providing high end
computingresources.Thesemachinesconsistof aPileof PCs
(PoPCs)built from off-the-shelfhardwarecomponents,apri-
vatehigh speednetwork suchasswitchedfastethernet,and
freely availablesoftwaretools andoperatingsystem.While
messagepassinglibrariesexist thatwill operateon this plat-
form, thecharacteristicsof thesemachinesdiffer significantly
from previousclustersof workstations,providing thusfarun-
exploredopportunitiesfor softwareoptimizationspecificto
this environment.

While evaluationsof messagepassinglibraries and perfor-
mancehave alreadybeenperformedon a varietyof message
passingimplementations,mostof themconcentrateon how
theselibrariesperformon MPP’s suchasthe Intel Paragon,
theIBM SP-2,andtheThinkingMachinesCM-5 [1, 8, 3]. In
orderto betterunderstandhow messagepassingsoftwareper-
formson the Beowulf architecture,the many differentinter-
facesandimplementationsshouldbequalitatively andquan-
titatively compared.In this paperwe examinea numberof
messagepassingpackageswhich can operateon Beowulf
workstations,focusingon the features,implementation,re-
liability, and performanceof thesepackages. Specifically,
we evaluatetwo versionsof the MessagePassingInterface
(MPI), LAM/MPI andMPICH [6], and the Parallel Virtual
Machine(PVM). In addition,wewill comparetheseto anew
messagepassingimplementation,which we will introduce,
called Beowulf Network Messaging(BNM). By looking at
thecharacteristicsof thesepackageswe hopeto discover ar-
easwhereimprovementcouldmemadewith respectto oper-
ationin theBeowulf environment.

In thefollowing introductionsections,we will provide back-

groundon the Beowulf workstationconceptand how soft-
ware� availablefor thisenvironmentis maturingin additionto
introducingthe messagepassingpackages.In Section2 we
qualitatively examinethe software packages,discussingis-
suessuchasfeaturesandimplementationdetails.In Section3
weexaminetheperformanceof thepackagesbothfor spawn-
ing tasksandfor somesamplecommunicationpatterns.Con-
clusionsaredrawn in Section4, recommendationsaremade
on potentialareasof improvement,andfutureareasof study
arediscussed.

1.1 Beowulf

The Beowulf-classparallelmachinehasevolved from early
work in low costcomputing.Thefirst work in this areacen-
teredaroundclustersof workstations[2]. Theseclustersare
oftenbuilt usingexisting workstationswhich areusedasin-
teractive systemsduring the day, can be heterogeneousin
composition,andrely on extra softwareto balancethe load
acrossthe machinesin the presenceof interactive jobs. As
it becameobvious that workstationscould be usedfor par-
allel processing,groupsbegan to build dedicatedmachines
from inexpensive,non-proprietaryhardware.These“Pile-of-
PCs” consistof a clusterof machinesdedicatedasnodesin
a parallel processor, built entirely from commodityoff the
shelfparts,andemploying a privatesystemareanetwork for
communication[11]. The useof off-the-shelfpartsresults
in systemsthat are tailored to meetthe needsof the users,
built usingthemostup-to-datetechnologyat thetime of pur-
chase,andcostsubstantiallylessthanpreviousparallelpro-
cessingsystems.TheBeowulf workstationconceptbuildson
the Pile-of-PCsconceptby utilizing a freely availablebase
of software. The free availability of most systemsoftware
sourceencouragescustomizationandperformanceimprove-
ments.Experimentshaveshown Beowulf workstationscapa-
ble of providing high performancefor applicationsin a num-
berof problemdomains.

Oneof thegreateststrengthsof commercialsystemsin gen-
eral hasalwaysbeenthe support,both in softwareandtrou-
bleshooting,that is madeavailable to owners. Along this
samevein the Beowulf communityhasbandedtogetherto
build a softwareinfrastructureandto assistoneanotherwith
problems. Most of this software alreadyexisted, including
theoperatingsystem,compiler, network file system,andmost
commonutilities. However, it hasbecomeapparentthatwhile
this softwareis robustandfulfills users’needs,thereis room
for improvement.Parallelfile systemssuchasPVFS[9] pro-
vide betterI/O performanceandconsistency for parallelap-
plicationsusingdistributeddatasets,processor-specificcom-
piler enhancementsandlibrariescanboostapplicationperfor-
mance,andkernelmodificationscanprovideservicessuchas
globalprocessID’s,globalsignalling,andDistributedShared
Memory (DSM) which helpbuild a morecompleteenviron-
ment.

Along thesesamelines, the existing messagepassingli-
brarieswerebuilt beforethe Beowulf environmenthadma-
tured. Thusthis softwaretoo couldpotentiallybealteredor
rewritten to moreeffectively operatein theBeowulf environ-
ment. In thepastthemessagepassinglibrariesavailablefor
Beowulf have beenusedprimarily by individualson clusters
of workstations.Theseindividualswould mostoftenconfig-
ure andinstall the softwarepersonally, thenstart the neces-
sarydaemonson theappropriatemachineswhenthey wished
to executeaparallelprogram.Thesetof machinesusedoften
variedbetweenexecutionsbasedon availability andload. In
the Beowulf environment,on the otherhand,messagepass-
ing supportshouldbe consideredsystemsoftware. Ideally
thissoftwarewouldbeinstalledandconfiguredby theadmin-
istrator andany necessarydaemonswould be startedalong
with otherserviceswhenthemachineis booted.Additionally
many of thesepackagesarewritten to supportheterogeneous
collectionsof machines.This againis not an issuein most
Beowulf machines.Luckily mostof thesepackageshaveop-
tions to disableencodingthat would take placeif heteroge-
neouscollectionswereused.

1.2 MessagePassingPackages

In this evaluationwe will focuson implementationsof three
different interfaces,the Parallel Virtual Machine, Message
PassingInterface,and Beowulf Network Messaging. Here
wegiveanoverview of thesepackages;detailsof thespecific
implementationswill bediscussedin section2.

1.2.1 PVM— The Parallel Virtual Machine (PVM) [4]
wasoriginally developedat Oak RidgeNationalLaboratory
(ORNL) specificallyto handlemessagepassingon heteroge-
neousdistributedcomputers.In additionto providing a mes-
sagepassinginterface,PVM implementsresourcemanage-
ment,signalhandling,andfault tolerancefeaturesthat help
build a userenvironmentfor parallelprocessing.As a result
of theseadditionalgenericcapabilitiesneededto passdata
reliably in a heterogeneousenvironment,PVM is generallya
lessefficientmessagepassinginterfaceonMassively Parallel
Processors(MPP’s) [5]. While PVM is thedefactostandard
for clustersof workstations,theneedto implementadditional
featuresbeyondthemessagepassinginterfacehindersit from
becomingubiquitousonMPP’s.

PVM’s implementationand interface development occur
mainlyatORNL.Thereare,however, commercialimplemen-
tationsof PVM availablethataredesignedfor efficient mes-
sagepassingon MPP architectures.Oneexampleis PVMe
for the IBM SP-2MPP [12]. TheseMPP implementations,
alongwith competingimplementationsfor PVM on clusters
of workstations,arenot common.

1.2.2 MPI— The MessagePassingInterface(MPI) Forum
hasbeenmeetingsince1992andis comprisedof highperfor-
mancecomputingprofessionalsfrom over 40 organizations

[13]. Their goal is to develop a messagepassinginterface
thatmeets� theneedsof themajorityof usersin orderto foster
theuseof acommoninterfaceontheever-growingnumberof
parallelmachines.By separatingthe interfacefrom the im-
plementation,MPI providesaframework for MPPvendorsto
utilize in designingefficient commercialimplementations.

A numberof vendorshave jumpedon the MPI bandwagon,
andvendor-suppliedimplementationsarenow availablefrom
IBM, Cray Research,SGI, Hewlett Packard,andothers. In
addition,a numberof competingimplementationshave been
createdfor clustersof workstations.Two popularchoiceson
clusters,MPICH and LAM/MPI, will be evaluatedin this
study. Thesetwo implementationshave beenthe subjectof
a previous study conductedon a clusterof DEC 3000/300
machinesconnectedwith FDDI [10].

TheMPI Chameleon(MPICH) effort beganin 1993asanat-
tempt to provide an immediateimplementationof MPI that
would track thestandardasit matured[6]. It wasdeveloped
at ArgonneNationalLaboratoryasa researchprojectto pro-
vide featuresthat make implementingMPI simpleon many
typesof hardware.To do this,MPICH implementsMPI over
anarchitectureindependentAbstractDevice Interface(ADI).
The ADI hasa smallerinterfacethanMPI, makingit easier
for vendorsto implement,resultingin quicker development
time without loss in efficiency. MPICH takes this onestep
further by implementingthe ADI on top of what they call a
“channelinterface”, providing an even smallerinterfacefor
a vendorto implement. While the “channel interface” im-
plementationswill beextremelyinefficient, it providesfor a
quick anddirty implementationthatcanbestreamlinedlater
by implementingtheADI piecemeal.

LocalAreaMulticomputer(LAM) originatedat theOhioSu-
per computingFacility and is now maintainedby the Lab-
oratoryof ScientificComputingat Notre Dame. LAM is a
packagethat providestaskscheduling,signalhandling,and
messagedelivery in adistributedenvironment,andis layered
to allow implementationwith any messagepassinginterface.
For example,PVM hasbeenimplementedover LAM, how-
everonly LAM’ sMPI versionwill beevaluatedin this study.

1.2.3 BNM—Beowulf Network Messaging(BNM) is cur-
rently under developmentat the Parallel ArchitectureRe-
searchLaboratoryat ClemsonUniversity asa low level so-
lution for taskspawning andcommunicationin theBeowulf
environment. BNM provides only a minimal set of facili-
ties, including remotetaskspawning, task ID management,
andbyteorientedmessagepassing.Thegoalof theprojectis
to provide a simpleandefficient communicationslibrary for
Beowulf thatcouldbeusedasabuilding blockfor implemen-
tationsof higherlevel interfacessuchasMPI. At themoment
BNM is in its infancy stageandtheresultsof this studywill
haveadirectimpacton its development.

2 IMPLEMENTATION OF PACKAGES

While all of thesepackagesprovideacommoncorefunction-
ality, therearesignificantdifferencesin the implementations
thathave an impacton both the easeof useandparticularly
the performanceof applicationsusingthem. Threeareasof
particular interestare the software architectureand related
tools, theapproachusedfor spawning tasks,andthemethod
of communicationbetweentasks.Eachof thesewill bedis-
cussedin turn here.

Theversionsof thepackageswe areusingareasfollows:

� PVM version3.3.11

� LAM version6.1

� MPICH version1.1.1(ch p4 interface)

� BNM version1.0

2.1 Architecture

There are significant differencesbetweenthe packagesin
termsof the architectureof the softwareand the tools pro-
vided. All packagesprovide a library of messagepassing
primitivesto which applicationslink. PVM andLAM/MPI
provide an additionaldaemonthat is startedby the userbe-
fore parallelapplicationsareexecuted.BNM usesa similar
daemon,but a singledaemonon eachnodehandlesrequests
for all usersandis startedwhenthemachineboots.MPICH,
by default,attemptsto useasystemlevel daemon,but canbe
configuredfor eitheruserlevel daemonsor canoptionfor the
standardremoteshellservice.

In terms of debugging and monitoring tools, PVM and
LAM/MPI arestrongest.PVM includesa consoleallowing
theuserto checkthestatusof PVM tasksandsendsignalsto
them.LAM providesa setof executabletoolswhich provide
similar functionality. MPICH providesvery few runtimeutil-
ities,but it does,alongwith PVM andLAM, provide for log
file generationandtraceutilities. BNM, on the otherhand,
provideslittle or no supportfor monitoringor debugging.

Therearetwo commontechniquesfor startingparalleltasks
usingtheseimplementations:theuseof a commandline ex-
ecutablethat startsthe parallel tasksand the useof library
calls to spawn taskson remotenodes. PVM, LAM/MPI,
and BNM provide both mechanisms;PVM allows execu-
tion to be startedfrom the consoleandallows parallel tasks
to bestartedfrom within anapplicationusingpvm spawn();
LAM/MPI providesmpirunto starttasksandadditionallyim-
plementsthe MPI 2.0 MPI Spawn() call which allows tasks
to be startedfrom within the application;BNM implements
bothbnmrunexecutableanda bnm spawn() library call; and
MPICH providesanmpirunexecutablefor startingtheparal-
lel tasks,but doesnot supporttheMPI Spawn() call.

Table1: MessagePassingSummary

Option LAM MPICH PVM BNM
Spawn method Userdaemon System,user, or rsh

daemon
Userdaemon Systemdaemon

Startupcommand mpirun mpirun pvm bnmrun
Spawn command MPI Spawn() N/A pvm spawn() bnm spawn()
UDP communication default No default No
UDP packetsize 8K N/A 4K (settablew/

pvm setopt)
N/A

UDP Retransmission
Timeout(observed)

500- 1200ms N/A 10ms N/A

TCPcommunication -c2c(mpirunoption) default PvmDirectRoute
(pvm setopt)

default

TCPpacketsize maximum maximum 4K (settablew/
pvm setopt)

maximum

Homogeneousmode -O (mpirunoption) automatic PvmDataRaw
(pvm initsend)

default

2.2 TaskSpawning

Therearethreemajor factorsthatdeterminethe time neces-
saryfor spawning tasks:themethodusedto starttheprocess,
thelocationof theexecutableandlibraries,andthefunctions
performedon startup. In all of our testsexecutableswere
storedonanNFSmountedfile system,sothis factorwasheld
constant.

Startingtasksis accomplishedvia oneof threetechniquesin
thesepackages:

� directuseof remoteshell to starteachtask

� useof remoteshellto startadaemonwhichsubsequently
startstasks

� useof a full-time daemonfor startingtasks

Before a user begins running parallel applicationsunder
PVM, he or shefirst startsup PVM anddefinesthe virtual
machine. This processstartsa userlevel PVM daemonon
eachof the nodesin the machineby usingthe remoteshell
facility. Thesedaemonsprovide the userruntimespawning
servicesfor PVM tasks.Oneuniquefeatureof thePVM dae-
monis its ability to startmultiple tasksonthesamenodewith
only onecommunicationfrom theparent;aswe will seethis
leadsto betterperformancefrom PVM whenstartingmultiple
taskson thesamenode.

LAM/MPI usesa techniquesimilar to PVM for spawning
tasks. The userfirst startsup user level daemonson each
nodein theLocal AreaMulticomputer. Thesedaemonsthen
spawn MPI tasksfor theuseratruntime.BNM, likePVM and
LAM, usesadaemonto startprocesses,however, thisdaemon
providesa systemservice,so it is startedwhenthe machine
boots,andonly onesuchdaemonis neededto servemultiple

users.BNM, LAM, andMPICH, unlikePVM, requiremulti-
ple communicationsfor multiple tasksspawnedon thesame
node.

MPICH attemptsto startremoteprocessesby connectingto
adefaultsystemlevel daemon,andif thatdaemonis unavail-
able,usesthe remoteshell facility. This default daemoncan
also be configuredat the userlevel, but we wereunableto
get this daemonto startupremoteprocessesproperlyduring
the testing. Therefore,the remoteshell wasused,which is
extremely slow, particularly when the inetd server is used.
Hence,MPICH is at a severedisadvantagewhenit comesto
the speedof startingnew tasks. However, we will seethat
otherfactorsleadsto comparableresultswith LAM/MPI.

The last factor in startup time is the amount of addi-
tional initialization and setup performed. For PVM (in-
cluding PvmDirectRouteversion) and BNM, this is mini-
mal; network connectionsare set up but not established.
LAM and MPICH require additional synchronizationof
the MPI COMM WORLD communicatorfrom each task.
MPICH, in order to synchronize,establishesTCP connec-
tions to the appropriatetasksandsubsequentlyclosesthose
connectionsbeforethe initialization is complete. Addition-
ally, LAM with the “-c2c” optionselected,specifyingdirect
taskto taskconnectivity usingTCP, requiresall taskto task
connectionsbeestablishedbeforethespawn completes.This
significantlyeffectsthespawn time,aswewill seein Section
3.

Otherspawn environmentoptions,not tested,areavailableon
boththeMPI andPVM versions.MPI allows theexecutable
to bepassedto thetargetnode,not requiringtheprogramto
exist on thatnode.MPI andPVM have optionsto provide a
currentworking directoryanda searchpathto find the exe-
cutable.They do soby settingthepathsup in a scriptfile be-
forehand,duringinitializationof thevirtual machineor local

areamulticomputerdaemons.BNM providesthis capability
by passing� theenvironmentevery time a new messagepass-
ingprogramexecutes.Duringtesting,weusedfull pathnames
for theexecutables,henceenvironmentswerenotused,sowe
couldeliminatethis variablefrom our testing.

2.3 MessagePassing

All of thesepackagesusestandardIP protocolsfor message
passingbetweennodes.PVM by default passesmessagesin
threesteps.First themessageis passedfrom theapplication
to thelocalPVM daemonvia aTCPstreamsocket(someim-
plementationsuseUNIX streamsockets). The daemonthen
dividesthe messageup into “packets” of approximately4K
bytes,which it passesto thePVM daemonon theremotema-
chineusingUDP. Each“packet” is acknowledgedby there-
ceiver individually, andlost packetsareresent.The timeout
and retransmissionfor lost packets is, from observation of
network traffic, generallyaround10 millisecondson our net-
work. PVM usesa simpleroundtrip time estimator[4], does
not seemto useKarn’s algorithm [14], and implementsno
delayedacknowledgmentstrategy.

Using the PvmDirectRouteoption for PVM, TCP is used
to communicatedirectly betweenapplicationtasks. These
connectionsare establishedwhen they are neededand they
are left open,onceconnected,until applicationcompletion.
WhenusingTCP, PVM still breaksthemessagesinto default
packetsof approximately4K, but acknowledgementsarenot
used(becausethey are not neededwith a reliable protocol
suchasTCP).As we will see,this unnecessarypacketization
resultsin inefficient useof TCP’s maximumsegmentsize.
This packet sizeis modifiablewith PVM daemoncommand
line parametersandthroughthepvm setopt()function.

LAM/MPI alsousesUDPby default. Applicationspassmes-
sagesthroughUNIX streamsockets to the LAM daemon,
which usesUDP to passthe messageto the LAM daemon
on the remotemachine,which then passesthe messageto
theapplicationthrougha UNIX streamsocket. LAM breaks
messagesinto packetsof approximately8K whentransferring
acrossthenetwork, andeachpacketis acknowledgedindivid-
ually. Fromobservingnetwork traffic, it seemsLAM usesa
slow start strategy, eventually (sends� 16K) allowing two
outstandingunacknowledgedpacketswhich consistentlyre-
sultedin lost IP fragments.The retransmissiontimeoutwas
observedbetween500to 1200milliseconds,andwhencom-
binedwith the large UDP packet size,canleadto poor per-
formanceoverourBeowulf network.

When the “-c2c” option is selected,LAM/MPI switchesto
TCPconnectionsfor datatransfer. As mentionedearlier, all
theseTCP connectionsare establishedwhen the tasksare
spawned. Theseconnectionsaremadedirectly betweenthe
tasks,andmessagesaresentasawholewithoutbeingbroken
up into packetsby theapplication.LAM’ s TCPversionuses

aneagersendstrategy with messagesizeslessthan16K and
a rendezvousstrategy when messagesizesare greaterthan
16K insteadof relying on TCPto handlebuffering andflow
control.

Both BNM andMPICH useTCP exclusively, directly con-
nect betweenapplicationtasks,andsendmessageswithout
breakingup the packetsat the applicationlayer. They open
connectionswhenthey areneededandhold themopenuntil
taskcompletion.

In thenext sectionwe will seehow theseimplementationde-
tails affect the overall performanceof the messagepassing
librariesbothin spawning tasksandin passingmessages.

3 PERFORMANCE

Our evaluationof theperformanceof thesepackagesfocuses
on two key areas,start-uptime for parallel tasksand mes-
sagepassingtime for somecommonpatterns. Spawn time
for tasksonaBeowulf machinemayor maynotbeimportant
to the user, dependingon the averagerun-timeof the appli-
cationsin use. For usersrunning many iterationsof short
run-timeapplicationsthis timecanbecritical. In any case,as
moreandmorecorefunctionsaredistributedacrosstheparal-
lel machine,thetime to starta remotetaskwill becomemore
important.

Thetimeto passmessagesbetweentasksobviouslyhasdirect
impacton the performanceof applications,especiallywhen
theapplicationsaremorefine-grain.In ourtestsweattemptto
cover somecommonlogical configurationsof processesthat
might be seenin applicationseitherbecauseof well-known
algorithmsor dueto portingfrom otherarchitectures.

We testoneinstanceof MPI’s complex datatypeconstructor
utilities andcomparethoseutilities with codethat provides
thisservicemanuallywith usercode.Finally, wewill discuss
reliability issuesweraninto duringthesetests.

3.1 TestSetup

The Beowulf systemusedin thesetestsconsistsof the fol-
lowing:

� 17 single-processor150MHz Intel Pentiumnodes

� 64 MB RAM pernode

� 2 SMCTulip-basedethernetcardspernodeusingtulip.c
v0.88

� 2 fast ethernetnetworks, one bus and one full-duplex
switch

� Linux 2.0.34

Oneof the 17 nodesis usedfor interactionwith the system,
while� theothersareusedsolelyfor computation.Theinterac-
tive,or “head”,nodecommunicateswith theothernodesover
thebusnetwork. All computenodescommunicatewith each
other over the full-duplex switch. On all tests,the “head”
nodeis usedto spawn off oneprocesson eachof the com-
putationnodesandto time all testsusingthegettimeofday()
call.

All software was setup for a homogeneous clus-
ter of workstations. PVM provides this with the
pvm initsend(PvmDataRaw) function, while LAM uses
the “-O” option on the mpirun commandline. MPICH
detects this automatically and BNM provides no other
functionality.

We alsomodifiedthe 2.0.34LINUX kernel to prevent TCP
from resettingtheslow startcongestionwindow afternotdo-
ing anything for a “long time” [7]. Without doing this, the
testswe performedslow down considerablyandprevent us
from seeingTCPin action.Basically, theTCPversionsnever
get out of slow start when the messagesize is bigger than
themaximumsegmentsize.For example,whenpassingmes-
sagesaroundin a ring, the combinationof the delayedac-
knowledgementandslow startpreventsa nodefrom retrans-
mitting againfor a “long time”. Sincewe want to seeTCP
implementedin full capacity, we removedthis feature.

3.2 StartingRemoteTasks

In this testwe usedtheheadnodeto spawn off theprocesses
ontothecomputationnodeswith nocomputationsperformed.
We startedtiming beforespawning beganandendedit after
the spawning operationscompleted. For PVM, LAM, and
BNM, we had the spawning task usethe respective spawn
library calls to performthis functionandtime theoperation.
With MPICH thereis no spawn library call, sowe timedthe
mpiruncommand.

As canbeseenfrom Figure1, MPICH takesthelongesttime
to performthe initial onetime startupof the messagepass-
ing tasks.This makessenseconsideringMPICH usesthere-
moteshell service(seeSection2.2). Also, LAM ,with the
“-c2c” option set, startsto catchup as the numberof pro-
cessesspawnedincreases.We would expectto seethis large
increaseasa resultof the numberof TCP connectionsthat
needto be establishedfor a largenumberof spawnedtasks.
Theothersoftwareversionsperformedwell, with PVM pro-
viding thebesttaskstartupservices,asweexpectedfrom our
discussionin Section2.2.

3.3 MessagePassingPerformance

Themessagepassingtestsconsistof onemasterprogramex-
ecutingon theheadspawning off oneprocesson eachof the

computationalnodes.Themaster’s job consistsof spawning
off theprocesses,doingthetiming,andwaitingfor aonebyte
messagefrom eachof theprocessingnodesto signalcomple-
tion of thetest.We designedthetestssuchthatthefirst com-
putationalnodein the Beowulf systemalwaysgetsassigned
task1, thesecondnodegetstask2, andsoon.

In performingthesetests,weusednonblockingsendsandre-
ceiveson all occasions.Unlessotherwisespecified(SeeSec-
tion 3.3.3),messagesizesarein bytesandweusesimpledata
typesin all communications.For instance,the MPI BYTE
datatypefor MPI andthe pvm pkbyte()commandfor PVM
areusedfor simplebytesends.BNM providesonly byteori-
entedserviceandhasno functionality to constructcomplex
datatypes.

3.3.1 RingandTorusTests—In all thering andtorustests,
weperformed50loopsandvariedthemessagesize.Thering
loop startedwith a sendfrom task1 to task2 andsoon. The
ring loop endswith a sendfrom task16 to task1 (seeFigure
2). The torus loop testhasa very similar setupas the ring
loop,but datawaspassedonly within a columnor row of the
torusmatrix (4x4 torus- seeFigure3 and4). For example,in
thecolumntest,dataloopsstartedattheheadof eachcolumn,
moveddown to theendof thecolumnandthenfinishedback
at thehead.The row testsact thesameway, exceptthedata
startsin therow heads.

As we canseefrom Figures5, 6, and7, thering patterntake
four timeslonger thanthe toruspatternswhich is expected.
We areusinga 16 nodering, andthe torusis 4x4 with each
columnor row of the toruspassingin a ring formation. The
only realpoint of this,again,is to createdifferenttraffic pat-
ternsanddeterminewhy differentalgorithmsperformbetter
underdifferent loads. As is obvious from the the figures,
PVM performsthe best,while the othersfall behindsignif-
icantly. We needto discusswhy that is the case,and then
moveon to discussingthesmalldifferencesbetweenthever-
sionsof MPI andBNM.

PVM implementsits own reliableprotocol layer over UDP
(SeeSection2.3), asdoesLAM, with PVM performingsig-
nificantlybetter. Thiscanbeattributedto thesmallerretrans-
missiontimeoutvaluesandthe smallerpacket size. The IP
fragmentationthatoccursis notasbadwith PVM’s4K packet
sizethenit is with LAM at8K. Thesmallerpacketshaveless
chanceof losinga fragmenton thenetwork. In our tests,the
8K packet sizecausedLAM to performerraticallyat larger
messagesizesand preventedus from getting consistentre-
sultsover 20K whereLAM will start to generatetwo com-
pleteoutstandingpackets(seeSection2.3).

The other versionsusing TCP have problemscomparedto
PVM becauseof theretransmissionstrategy of theTCPpro-
tocol. This includestheretransmissiontimeouts,delayedac-
knowledgments,slow start,congestionavoidance,Nagle,and
fastretransmitandrecoveryalgorithms.All of theseTCPal-
gorithmsarebasedupontestingin generalnetworking traf-

0

5

10

15

20

25

0 5 10 15 20 25 30 35

T
im

e
(s

ec
on

ds
)

Procs

BNM
LAM

LAM_C2C
PVM

MPICH

Figure1: SpawningTests

2

6

9 10 11 12

13 14 1615

5 7 8

431

Figure2: RingTestDescription

2

6

9 10 11 12

13 14 1615

5 7 8

431

Figure3: Row TorusTestDescription

13 14 1615

10 11 129

65 7 8

2 431

Figure4: ColumnTorusTestDescription

0

20

40

60

80

100

0 5000 100001500020000250003000035000400004500050000

T
im

e
(s

ec
on

ds
)

Msgsize

BNM
LAM

LAM_C2C
PVM

PVM_DIR
MPICH

Figure5: RingTests

0

10

20

30

40

50

0 5000 100001500020000250003000035000400004500050000

T
im

e
(s

ec
on

ds
)

Msgsize

BNM
LAM

LAM_C2C
PVM

PVM_DIR
MPICH

Figure6: Row TorusTests

0

10

20

30

40

50

0 5000 100001500020000250003000035000400004500050000

T
im

e
(s

ec
on

ds
)

Msgsize

BNM
LAM

LAM_C2C
PVM

PVM_DIR
MPICH

Figure7: ColumnTorusTests

fic environments,which will differ from traffic in a private
network generatingonly messagepassingtraffic. PVM’s di-
rectrouteTCPimplementationperformsworsethantheother
TCPimplementationsbecauseof theapplicationlayerpack-
etizationwedescribedin Section2.3.

3.3.2 ProcessBottleneck Tests—In this test,a centralbot-
tlenecktask,task1, sendsdatato tasks2 through16. After
receiving thedata,tasks2 through16 senddatabackto task
1 (seeFigure8). We performedthis testfor five iterationsof
thesendsandreceiveswhile wevariedthemessagesize.

FromFigure9, we seethat theTCPversionsof themessage
passingsoftware packagesgenerally perform consistently,
while theUDP versionsbehave erraticallyandpoorly asthe
messagesizeincreases.Thiswouldleadusto concludeTCP’s
retransmissionstrategy behaves better, with heavy conges-
tion, thanwhatPVM andLAM implementover UDP. How-
ever, weseeonestrikingexampleof unstableperformancein
LAM/MPI’ sTCPversion.

Theonly differencebetweenLAM’ sTCPversion,compared
to BNM, PVM, andMPICH, relatesto thesetupof communi-
cations.As we statedin section2.3,LAM fully connectsall
tasksduringtaskstartup,while theothersonly connectwhen
a communicationis requiredbetweentwo tasks. What this
creates,duringthesebottlenecktests,is anartificial roundtrip
time (RTT) andretransmissiontimeout(RTO) calculatedby
TCP. Basically, when we start communicationswith LAM,
datais sentimmediatelyto all tasksand thenpromptly re-
turnedby all tasks. This obviously createsseriousconges-
tion onourswitchednetwork, asit is intendedto, andusually

leadsto lostTCPpackets.

TCP startswith an RTO of threeseconds,which on some
occasionsallows a taskto receive data,sendthecorrespond-
ing acknowledgmentpacket with or without data,have that
packet lost andretransmittedbeforethe RTO of the original
sendingprocessexpires. This leadsto artificial RTT values
and RTO calculationswhich, if conditionsare appropriate,
hit a “harmonic” leadingto the RTO eventuallyclampingat
its maximumvalueof two minutes.This problemis exacer-
batedby thebackoff strategy [7] usedthatdoublestheRTO
after every lost packet anddoesnot resetitself until an ac-
knowledgmentis received from a non-retransmittedpacket.
For example,apacketbeingsentto thesameprocessorcould
getlosteverytimewesendthefirst timeonly, andbecausethe
backoff countnever getsreset,we will reachthemaximum
valueof theRTO veryquickly.

TheseRTT and RTO problemsrarely occur with the other
implementationsusingTCP. The otherversionsdo not con-
nectbeforecommunications,resultingin thefirst sendof data
from the bottlenecked processto be lesscongested.During
thesefirst setof sends,eachtaskconnectionmustbe setup
beforesendingdata. Connectingtasksusing TCP requires
theprocessto blockuntil theconnectionhasbeenestablished,
therefore,theonly competingtraffic in thenetwork will bethe
connectionhandshaketo thenext processor. Becausepackets
in this un-congestedenvironmentarenot lost, we achieve a
goodinitial RTT estimationandRTO calculation. To prove
this point, we modified the bottleneckprogramfor LAM,
so that, on the first datasend,the central task performsa
send/receive combinationto eachtaskseparately. After this

9
10

12

14

16 2

8

7

6

5

4

3

13

15

11

1

Figure8: BottleneckTestDescription

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(s

ec
on

ds
)

Msgsize

BNM
LAM

LAM_C2C
PVM

PVM_DIR
MPICH

LAM_C2C_1

Figure9: BottleneckTests

initial send,westartedtheidenticalbottleneckedalgorithmas
before.� Theresultsareshown in Figure9 in theLAM C2C 1
graph. The resultingperformancemeasurementsfor LAM’ s
modifiedTCPtestswereasstableastheotherTCPpackages.

We noticedoneotherinterestingobservationaboutmessage
sizesoutsideof the rangeof Figure 9. When LAM (-c2c)
changesits messagingstrategy to rendezvous at 16K (see
Section2.3), it performspoorly relative to the other algo-
rithms.Theneedfor thebottleneckedprocessorto poll every
timethroughtheloopresultsin thenetwork beingusedineffi-
ciently, eventhoughtheresultingtraffic will beun-congested.

3.3.3 Matrix TransposeTests—Here,wehaveeachcompu-
tationalnodepassdataaroundin thering patterndiscussedin
Section3.3.1,transposinga squarematrix oncebeforesend-
ing to the next node. We are trying to determinewhat, if
any, pitfalls exist in using MPI’s derived data types. We
utilize the MPI Datatypeconstructand the MPI vectorand
MPI hvectorinterfacesto performamatrix transpositionand
then implementeda “raw” versionof this matrix transposi-
tion manually for eachversionof software we are testing.
Any versionsin Figure 10 or 11 with an “R” in the name
for LAM or MPICH aretheraw versionsthatdo not usethe
MPI specialdataconstructs.NeitherPVM or BNM havethis
functionalityfor transposingmatrices.PVM providesgeneric
datatypesandstridedpatterncapabilityfor sends,but it is not
asversatileasMPI.

Fromtheresultsin thefigures,wecanseethatit doesn’t make
much differenceif we usethe raw versionsor the versions
usingthe specialdatatypes. The figuresmatchup with the
ring patterntestof the samemessagesizepatterns.Square
the matrix sizeandmultiply timesfour (integermatrices)to
getthecorrespondingmessagesize.

3.4 Reliability

LAM provedtohavethemostproblemslockinguporslowing
down unpredictablyduring testing. Oneproblemwe could
predict, was that LAM left the UNIX acceptsockets open
to the daemonafter the LAM taskscompleted.This, obvi-
ously, will eventuallycausea programcrashwhenwe reach
the LINUX file descriptorlimit. It seemsasif this problem
only occurswhenspawningwith theMPI Spawn() command
andnotwhenusingthempiruncommand.

On a few occasion,PVM with PvmDirectRouteoptiondead-
locked for unknown reasons.It wasvery difficult to repro-
duce. During the courseof testing,we tried many different
teststo seewhat impact they would have. Oneof the tests
we did not discusswasdoingring testson a largenumberof
nodes.For example,we would startup 255 taskson our 16
nodessystemandthentry to performcommunications.While
theUDPversionshandledthisfine (for smallmessagesizes),
the TCP versionsall crashedconsistentlyas a resultof the
255 file descriptorlimit of LINUX. This shouldrarely be a

problemon our system,but may be on larger nodesystems
thatwantto communicateto a centralprocess.

4 CONCLUSIONS

We canseefrom this studyof messagepassingimplementa-
tionson theBeowulf clusterthatthegeneralnetworking traf-
fic algorithmsof TCPdo not alwaysprovide thebestperfor-
mance.ThesimpleUDP implementationthatPVM provides
offers superiorperformancein somecases,while the TCP
implementationof PVM showsuswhatnot to do;application
level packetizationover TCP. We also observed that TCP’s
RTT andRTO calculationscanleadto artificial estimatesand
poor performanceon a network whoseRTT shouldbe ex-
tremelysmallwith little deviation.

We determinedthat the complex data types usedby MPI
do not causea degradationin performance.In addition,we
found that spawning taskson the Beowulf clustershouldbe
donewith aspecializeddaemonwith anoptionto spawn mul-
tiple taskson thesamenodewith onerequest.

Fromthis paper, we discoveredthatmodificationsof theker-
nelTCPimplementationcanimprovecommunicationperfor-
manceon ournetwork. This hasdevelopeda focusfor future
work relating to modifying TCP’s transmissionalgorithms
to boostperformanceon the Beowulf. We want to design
a kernelpatchthat allows TCP parametersto be modifiable
from the /proc file systemandtestperformancewhile vary-
ing thesealgorithms.Thesetests,afterobtaininganoptimal
TCPparameterconfiguration,shouldleaddirectly to aneffi-
cientversionof MPICH overoursystemsoftwareandBNM.
Additional focuseswe have along theselines geartowards
designingour own reliableprotocolover ethernet,bypassing
IP completely.

References

[1] Henri Casanova, JackDongarra,andWeichengJiang.
The performanceof PVM on MPP systems. Techni-
calReportCS-95-301,Universityof Tennessee,August
1995.

[2] Karen Castagnera,DoreenCheng, Rod Fatoohi, Ed-
wardHook, Bill Kramer, CraigManning,JohnMusch,
CharlesNiggley, William Saphir, DouglasSheppard,
Merritt Smith, Ian Stockdale, Shaun Welch, Rita
Williams, andDavid Yip. Clusteredworkstationsand
their potentialrole ashigh speedcomputeprocessors.
TechnicalReportRNS-94-003,NAS SystemsDivision,
NASA AmesResearchCenter, April 1994.

[3] JackJ. DongarraandTom Dunigan. Message-passing
performanceof variouscomputers. Technicalreport,
Universityof Tennessee,January1997.

[4] A. Geist, A. Beguelin, J. Dongarra, R. Manchek,
W. Jiang,andV. Sunderam.PVM: A Users’ Guideand

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180

T
im

e
(s

ec
on

ds
)

Matrix Size

BNM
LAM_C2C

LAM_RC2C
PVM

PVM_DIR
MPICH

MPICH_R

Figure10: TransposeTests

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90

T
im

e
(s

ec
on

ds
)

Matrix Size

LAM
LAM_R

Figure11: TransposeTests

Tutorial for NetworkedParallel Computing. MIT Press,
1994.

[5] G.A Geist,J.A.Kohl,andP.M. Papadopoulos.PVM and
MPI: a comparisonof features.TechnicalReportDE-
AC0596OR22464,LockheedMartin Energy Research
Corporation,May 1996.

[6] W. Gropp,E. Lusk, N. Doss,andA. Skjellum. A high-
performance,portableimplementationof theMPI mes-
sagepassinginterfacestandard. Parallel Computing,
22(6):789–828,September1996.

[7] V. Jacobsenand M. Karels. Congestioncontrol and
avoidance. In Proceedingsof ACM SIGCOMM ’88,
1988.

[8] Vijay KaramchetiandAndrew A. Chien. A compari-
sonof architecturalsupportfor messagingin the TMC
CM-5 andthecrayT3D. In Proceedingsof the1995In-
ternationalSymposiumonComputerArchitecture, June
1995.

[9] W. B. Ligon and R. B. Ross. Implementationand
performanceof a parallel file systemfor high perfor-
mancedistributedapplications. In Proceedingsof the
Fifth IEEE International Symposiumon High Perfor-
manceDistributed Computing, pages471–480.IEEE
ComputerSocietyPress,August1996.

[10] Nick Nevin. Theperformanceof LAM 6.0andMPICH
1.0.12ona workstationcluster. TechnicalReportOSC-
TR-1996-4,Ohio SupercomputerCenter, March1996.

[11] Daniel Ridge, Donald Becker, Phillip Merkey, and
ThomasSterling. Beowulf: Harnessingthe power of
parallelismin a pile-of-pcs.In Proceedingsof the1997
IEEEAerospaceConference, 1997.

[12] Bill Saphirand SamFineberg. Performancecompar-
isonsof MPL, MPI, PVMe. Technicalreport,NAS Par-
allel Systems,September1998.

[13] Marc Snir, Steve Otto, Steven Huss-Lederman,David
Walker, andJackDongarra.MPI: TheCompleteRefer-
ence. MIT Press,1995.

[14] W. Richard Stevens. TCP/IP Illustrated, Volume 1.
Addison-Wesley, 1994.

Phil Carns is a studentat Clem-
sonUniversityworkingtowardshis
B.S.in ComputerEngineering. He
is currently doing research as an
honors project for the Calhoun
Honors program. His interests
are in message passingimplemen-
tationsand socket level interfaces.

Walter Ligon receivedhisPh. D. in
ComputerSciencefrom the Geor-
gia Instituteof Technology in 1992.
Since then he has beenat Clem-
sonUniversitywhereheis anAssis-
tantProfessorin theDepartmentof
ElectricalandComputerEngineer-
ing. His current research interests
are in parallel anddistributedsys-
tems,I/O for parallel systems,re-
configurablecomputing, and problemsolvingenvironments.

Scott McMillan receivedhis Bach-
elors of Electrical Engineering
from the Georgia Instituteof Tech-
nology in 1992. Currently, he is
working towards his M.S. in Com-
puterEngineeringat ClemsonUni-
versity. His interestsinclude mes-
sagepassingimplementations,par-
allel I/O, and systemslevel soft-
ware.

Robert Ross receivedhis B.S. in
ComputerEngineeringfrom Clem-
sonUniversity in 1994. Currently
he is working towards his Ph. D.
in ComputerEngineeringat Clem-
son University. His interests in-
cludeparallel file systems,schedul-
ing algorithms,andvisualization.

